4-8 October 2015
Hans Harnack Haus
Europe/Berlin timezone
Home > Timetable > Session details > Contribution details

Contribution Poster

Poster session

Chemical modeling of high-mass star forming regions.

Speakers

  • Gwendoline STÉPHAN

Primary authors

Co-authors

  • Prof. Peter SCHILKE (I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937, Köln, Germany)
  • Prof. Jacques LE BOURLOT (LERMA, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris, France)
  • Dr. Rumpa CHOUDHURY (Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching bei München, Germany)
  • Dr. Benjamin GODARD (LERMA, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris, France)
  • Anika SCHMIEDEKE (I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937, Köln, Germany)

Content

In order to study the time evolution of hot cores and further stages of high-mass star forming regions, we have developed a chemical code (Saptarsy, Choudhury et al., 2015 [1]) which is currently working together with a radiative transfer code (RADMC-3D, http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/). Saptarsy is a gas-grain code taking into account heavy radical movements at high grain temperatures (Garrod et al., 2008 [2]).

RADMC-3D is first used to compute self-consistently the dust temperature profile. Then Saptarsy uses it as well as a density profile and a luminosity functions for accreting high-mass protostars (Hosokawa & Omukai, 2009 [3]). What we obtain at the end thanks to RADMC-3D are time-dependent synthetic spectra using the detail modeling of the spatio-temporal evolution of chemical abundances. Those spectra will then be compared to observations.

The effect of UV photons is major in those regions when a HII region starts to form. Indeed they create internals PDRs at the interface between the HII region and the molecular gas. This needs to be investigated particularly in the context of ionized flows (Krumholz et al. 2007 [4], Peters et al. 2010 [5]) or PDRs on outflow cavities (Visser et al. 2012 [7]). Thus the spatio-temporal evolution of the radiation field has been implemented in the model in order to get a more accurate photochemistry.

[1] Choudhury, R., Schilke, P., Stéphan, G. et al. 2015, A&A, 575, 68 --- [2] Garrod, R.T., Weaver S. & Herbst E. 2008, ApJ 682, 283 --- [3] Hosokawa, T. & Omukai, K. 2009, ApJ, 691, 823 --- [4] Krumholz, M. R. & Tan, J. C. 2007, ApJ 654, 304 --- [5] Peters, T., Banerjee, R., Klessen, R. S. 2010, ApJ 711, 1017 --- [6] Visser, R., Kristensen, L. E., Bruderer, S., A&A 537, A55 ---